Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397115

RESUMO

Zika virus (ZIKV) is a positive-sense single-stranded virus member of the Flaviviridae family. Among other arboviruses, ZIKV can cause neurological disorders such as Guillain Barré syndrome, and it can have congenital neurological manifestations and affect fertility. ZIKV nonstructural protein 5 (NS5) is essential for viral replication and limiting host immune detection. Herein, we performed virtual screening to identify novel small-molecule inhibitors of the ZIKV NS5 methyltransferase (MTase) domain. Compounds were tested against the MTases of both ZIKV and DENV, demonstrating good inhibitory activities against ZIKV MTase. Extensive molecular dynamic studies conducted on the series led us to identify other derivatives with improved activity against the MTase and limiting ZIKV infection with an increased selectivity index. Preliminary pharmacokinetic parameters have been determined, revealing excellent stability over time. Preliminary in vivo toxicity studies demonstrated that the hit compound 17 is well tolerated after acute administration. Our results provide the basis for further optimization studies on novel non-nucleoside MTase inhibitors.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Infecção por Zika virus/tratamento farmacológico , Modelos Moleculares , Antivirais/química , Proteínas não Estruturais Virais/metabolismo
2.
Bioorg Chem ; 143: 107035, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199140

RESUMO

Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Metiltransferases/metabolismo , Metilação , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , SARS-CoV-2/metabolismo , RNA Viral , Zika virus/metabolismo
3.
Nucleic Acids Res ; 52(3): 1359-1373, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38015463

RESUMO

Viral RNA genomes are modified by epitranscriptomic marks, including 2'-O-methylation that is added by cellular or viral methyltransferases. 2'-O-Methylation modulates RNA structure, function and discrimination between self- and non-self-RNA by innate immune sensors such as RIG-I-like receptors. This is illustrated by human immunodeficiency virus type-1 (HIV-1) that decorates its RNA genome through hijacking the cellular FTSJ3 2'-O-methyltransferase, thereby limiting immune sensing and interferon production. However, the impact of such an RNA modification during viral genome replication is poorly understood. Here we show by performing endogenous reverse transcription on methylated or hypomethylated HIV-1 particles, that 2'-O-methylation negatively affects HIV-1 reverse transcriptase activity. Biochemical assays confirm that RNA 2'-O-methylation impedes reverse transcriptase activity, especially at low dNTP concentrations reflecting those in quiescent cells, by reducing nucleotide incorporation efficiency and impairing translocation. Mutagenesis highlights K70 as a critical amino acid for the reverse transcriptase to bypass 2'-O-methylation. Hence, the observed antiviral effect due to viral RNA 2'-O-methylation antagonizes the FTSJ3-mediated proviral effects, suggesting the fine-tuning of RNA methylation during viral replication.


Assuntos
Transcriptase Reversa do HIV , HIV-1 , Processamento Pós-Transcricional do RNA , RNA Viral , Replicação Viral , Humanos , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Nucleotídeos/metabolismo , Transcrição Reversa , RNA Viral/metabolismo
4.
Commun Biol ; 6(1): 1074, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865687

RESUMO

The respiratory syncytial virus polymerase complex, consisting of the polymerase (L) and phosphoprotein (P), catalyzes nucleotide polymerization, cap addition, and cap methylation via the RNA dependent RNA polymerase, capping, and Methyltransferase domains on L. Several nucleoside and non-nucleoside inhibitors have been reported to inhibit this polymerase complex, but the structural details of the exact inhibitor-polymerase interactions have been lacking. Here, we report a non-nucleoside inhibitor JNJ-8003 with sub-nanomolar inhibition potency in both antiviral and polymerase assays. Our 2.9 Å resolution cryo-EM structure revealed that JNJ-8003 binds to an induced-fit pocket on the capping domain, with multiple interactions consistent with its tight binding and resistance mutation profile. The minigenome and gel-based de novo RNA synthesis and primer extension assays demonstrated that JNJ-8003 inhibited nucleotide polymerization at the early stages of RNA transcription and replication. Our results support that JNJ-8003 binding modulates a functional interplay between the capping and RdRp domains, and this molecular insight could accelerate the design of broad-spectrum antiviral drugs.


Assuntos
Vírus Sincicial Respiratório Humano , RNA Polimerase Dependente de RNA/química , Ligação Proteica , RNA/metabolismo , Nucleotídeos/metabolismo
5.
Antiviral Res ; 212: 105574, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905944

RESUMO

AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 µM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/tratamento farmacológico , Vírus da Dengue/fisiologia , Guanosina/farmacologia , Guanosina/metabolismo , Guanosina Trifosfato/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
6.
Viruses ; 15(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851554

RESUMO

The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.


Assuntos
Nucleoproteínas , Vírus Sincicial Respiratório Humano , Idoso , Lactente , Humanos , RNA Polimerase Dependente de RNA , Fatores de Transcrição , Anticorpos Monoclonais , Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA
8.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35439007

RESUMO

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/virologia , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/química , Humanos , Metiltransferases , Simulação de Acoplamento Molecular , RNA Viral/genética , S-Adenosilmetionina , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química
9.
J Virol ; 96(8): e0012822, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35343766

RESUMO

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.


Assuntos
COVID-19 , Furina , SARS-CoV-2 , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/patologia , COVID-19/virologia , Furina/metabolismo , Células HeLa , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
10.
PLoS Pathog ; 17(5): e1009562, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956914

RESUMO

Respiratory syncytial virus (RSV) is a negative sense single-stranded RNA virus and one of the main causes of severe lower respiratory tract infections in infants and young children. RSV RNA replication/transcription and capping are ensured by the viral Large (L) protein. The L protein contains a polymerase domain associated with a polyribonucleotidyl transferase domain in its N-terminus, and a methyltransferase (MTase) domain followed by the C-terminal domain (CTD) enriched in basic amino acids at its C-terminus. The MTase-CTD of Mononegavirales forms a clamp to accommodate RNA that is subsequently methylated on the cap structure and depending on the virus, on internal positions. These enzymatic activities are essential for efficient viral mRNA translation into proteins, and to prevent the recognition of uncapped viral RNA by innate immunity sensors. In this work, we demonstrated that the MTase-CTD of RSV, as well as the full-length L protein in complex with phosphoprotein (P), catalyzes the N7- and 2'-O-methylation of the cap structure of a short RNA sequence that corresponds to the 5' end of viral mRNA. Using different experimental systems, we showed that the RSV MTase-CTD methylates the cap structure with a preference for N7-methylation as first reaction. However, we did not observe cap-independent internal methylation, as recently evidenced for the Ebola virus MTase. We also found that at µM concentrations, sinefungin, a S-adenosylmethionine analogue, inhibits the MTase activity of the RSV L protein and of the MTase-CTD domain. Altogether, these results suggest that the RSV MTase domain specifically recognizes viral RNA decorated by a cap structure and catalyzes its methylation, which is required for translation and innate immune system subversion.


Assuntos
Metilação de DNA , Metiltransferases/metabolismo , Capuzes de RNA/metabolismo , RNA Viral/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas não Estruturais Virais/metabolismo , Humanos , Imunidade Inata , Metiltransferases/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
11.
Eur J Med Chem ; 201: 112557, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32563813

RESUMO

The spreading of new viruses is known to provoke global human health threat. The current COVID-19 pandemic caused by the recently emerged coronavirus SARS-CoV-2 is one significant and unfortunate example of what the world will have to face in the future with emerging viruses in absence of appropriate treatment. The discovery of potent and specific antiviral inhibitors and/or vaccines to fight these massive outbreaks is an urgent research priority. Enzymes involved in the capping pathway of viruses and more specifically RNA N7- or 2'O-methyltransferases (MTases) are now admitted as potential targets for antiviral chemotherapy. We designed bisubstrate inhibitors by mimicking the transition state of the 2'-O-methylation of the cap RNA in order to block viral 2'-O MTases. This work resulted in the synthesis of 16 adenine dinucleosides with both adenosines connected by various nitrogen-containing linkers. Unexpectedly, all the bisubstrate compounds were barely active against 2'-O MTases of several flaviviruses or SARS-CoV but surprisingly, seven of them showed efficient and specific inhibition against SARS-CoV N7-MTase (nsp14) in the micromolar to submicromolar range. The most active nsp14 inhibitor identified is as potent as but particularly more specific than the broad-spectrum MTase inhibitor, sinefungin. Molecular docking suggests that the inhibitor binds to a pocket formed by the S-adenosyl methionine (SAM) and cap RNA binding sites, conserved among SARS-CoV nsp14. These dinucleoside SAM analogs will serve as starting points for the development of next inhibitors for SARS-CoV-2 nsp14 N7-MTase.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Exorribonucleases/antagonistas & inibidores , Metiltransferases/antagonistas & inibidores , Nucleosídeos/química , Pneumonia Viral/tratamento farmacológico , Capuzes de RNA/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenina/química , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Exorribonucleases/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo
12.
Cell ; 179(1): 193-204.e14, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31495574

RESUMO

Numerous interventions are in clinical development for respiratory syncytial virus (RSV) infection, including small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). RSV P recruits multiple proteins to the polymerase complex and, with the exception of its oligomerization domain, is thought to be intrinsically disordered. Despite their critical roles in RSV transcription and replication, structures of L and P have remained elusive. Here, we describe the 3.2-Å cryo-EM structure of RSV L bound to tetrameric P. The structure reveals a striking tentacular arrangement of P, with each of the four monomers adopting a distinct conformation. The structure also rationalizes inhibitor escape mutants and mutations observed in live-attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.


Assuntos
Fosfoproteínas/ultraestrutura , RNA Polimerase Dependente de RNA/ultraestrutura , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/enzimologia , Proteínas Virais/ultraestrutura , Acetatos/química , Animais , Antivirais/química , Antivirais/uso terapêutico , Domínio Catalítico , Microscopia Crioeletrônica , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Quinolinas/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vacinas contra Vírus Sincicial Respiratório/química , Células Sf9 , Spodoptera , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
13.
Methods Mol Biol ; 1835: 119-128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109648

RESUMO

To date, several sensitive methods, based on radiolabeled elements or sterically hindered fluorochrome groups, are usually employed to screen lipase and phospholipase A (PLA) activities. Here, a new ultraviolet spectrophotometric assay for lipase or PLA was developed using natural triglycerides or synthetic glycerophosphatidylcholines containing α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) purified from Aleurites fordii seed oil. The conjugated triene present in α-eleostearic acid constitutes an intrinsic chromophore and consequently confers strong UV absorption properties of this free fatty acid as well as of lipid substrates harboring it. The substrate was coated into the wells of a microplate, and the lipolytic activities were measured by the absorbance increase at 272 nm due to the transition of α-eleostearic acid moiety from the adsorbed to the soluble state. This continuous assay is compatible with a high-throughput screening method and can be applied specifically to the screening of new potential lipase, PLA1 and PLA2 inhibitors.


Assuntos
Ácidos Linolênicos/metabolismo , Lipase/metabolismo , Fosfolipases A/metabolismo , Espectrofotometria , Ativação Enzimática , Ensaios Enzimáticos/métodos , Lipase/química , Lipólise , Fosfolipases A/química , Óleos de Plantas/química , Espectrofotometria/métodos , Espectrofotometria/normas , Espectrofotometria Ultravioleta/métodos , Especificidade por Substrato
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1006-1015, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859246

RESUMO

Talaromyces thermophilus lipase (TTL) was found to hydrolyze monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) substrates presented in various forms to the enzyme. Different assay techniques were used for each substrate: pHstat with dioctanoyl galactolipid-bile salt mixed micelles, barostat with dilauroyl galactolipid monomolecular films spread at the air-water interface, and UV absorption using a novel MGDG substrate containing α-eleostearic acid as chromophore and coated on microtiter plates. The kinetic properties of TTL were compared to those of the homologous lipase from Thermomyces lanuginosus (TLL), guinea pig pancreatic lipase-related protein 2 and Fusarium solani cutinase. TTL was found to be the most active galactolipase, with a higher activity on micelles than on monomolecular films or surface-coated MGDG. Nevertheless, the UV absorption assay with coated MGDG was highly sensitive and allowed measuring significant activities with about 10 ng of enzymes, against 100 ng to 10 µg with the pHstat. TTL showed longer lag times than TLL for reaching steady state kinetics of hydrolysis with monomolecular films or surface-coated MGDG. These findings and 3D-modelling of TTL based on the known structure of TLL pointed out to two phenylalanine to leucine substitutions in TTL, that could be responsible for its slower adsorption at lipid-water interface. TTL was found to be more active on MGDG than on DGDG using both galactolipid-bile salt mixed micelles and galactolipid monomolecular films. These later experiments suggest that the second galactose on galactolipid polar head impairs the enzyme adsorption on its aggregated substrate.


Assuntos
Proteínas Fúngicas/química , Galactolipídeos/química , Lipase/química , Talaromyces/química , Ar/análise , Animais , Ácidos e Sais Biliares/química , Hidrolases de Éster Carboxílico/química , Ensaios Enzimáticos , Fusarium/química , Fusarium/enzimologia , Cobaias , Hidrólise , Cinética , Ácidos Linolênicos/química , Micelas , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Especificidade por Substrato , Propriedades de Superfície , Talaromyces/enzimologia , Raios Ultravioleta , Água/química
15.
Chem Phys Lipids ; 211: 66-76, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29155085

RESUMO

The interaction of pancreatic lipase-related protein 2 (PLRP2) with various micelles containing phospholipids was investigated using pHstat enzyme activity measurements, differential light scattering, size exclusion chromatography (SEC) and transmission IR spectroscopy. Various micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and lysophosphatidylcholine were prepared with either bile salts (sodium taurodeoxycholate or glycodeoxycholate) or Triton X-100, which are substrate-dispersing agents commonly used for measuring phospholipase activities. PLRP2 displayed a high activity on all phospholipid-bile salt micelles, but was totally inactive on phospholipid-Triton X-100 micelles. These findings clearly differentiate PLRP2 from secreted pancreatic phospholipase A2 which is highly active on both types of micelles. Using an inactive variant of PLRP2, SEC experiments allowed identifying two populations of PLRP2-DPPC-bile salt complexes corresponding to a high molecular weight 1:1 PLRP2-micelle association and to a low molecular weight association of PLRP2 with few monomers of DPPC/bile salts. IR spectroscopy analysis showed how DPPC-bile salt micelles differ from DPPC-Triton X-100 micelles by a higher fluidity of acyl chains and higher hydration/H-bonding of the interfacial carbonyl region. The presence of bile salts allowed observing changes in the IR spectrum of DPPC upon addition of PLRP2 (higher rigidity of acyl chains, dehydration of the interfacial carbonyl region), while no change was observed with Triton X-100. The differences between these surfactants and their impact on substrate recognition by PLRP2 are discussed, as well as the mechanism by which high and low molecular weight PLRP2-DPPC-bile salt complexes may be involved in the overall process of DPPC hydrolysis.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Ácidos e Sais Biliares/metabolismo , Lipase/metabolismo , Micelas , Pâncreas/enzimologia , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Ácidos e Sais Biliares/química , Cobaias , Hidrólise , Lipase/análise , Lipase/química , Lipólise , Espectrofotometria Infravermelho
16.
Chem Phys Lipids ; 211: 77-85, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29137992

RESUMO

Usual methods for the continuous assay of lipolytic enzyme activities are mainly based on the titration of free fatty acids, surface pressure monitoring or spectrophotometry using substrates labeled with specific probes. These approaches only give a partial information on the chemistry of the lipolysis reaction and additional end-point analyses are often required to quantify both residual substrate and lipolysis products. We used transmission infrared (IR) spectroscopy to monitor simultaneously the hydrolysis of phospholipids by guinea pig pancreatic lipase-related protein 2 (GPLRP2) and the release of lipolysis products. The substrate (DPPC, 1,2-Dipalmitoyl phosphatidylcholine) was mixed with sodium taurodeoxycholate (NaTDC) to form mixed micelles in D2O buffer at pD 6 and 8. After hydrogen/deuterium exchange, DPPC hydrolysis by GPLRP2 (100nM) was monitored at 35°C in a liquid cell by recording IR spectra and time-course variations in the CO stretching region. These changes were correlated to variations in the concentrations of DPPC, lysophospholipids (lysoPC) and palmitic acid (Pam) using calibration curves established with these compounds individually mixed with NaTDC. We were thus able to quantify each compound and its time-course variations during the phospholipolysis reaction and to estimate the enzyme activity. To validate the IR analysis, variations in residual DPPC, lysoPC and Pam were also quantified by thin-layer chromatography coupled to densitometry and similar hydrolysis profiles were obtained using both methods. IR spectroscopy can therefore be used to monitor the enzymatic hydrolysis of phospholipids and obtain simultaneously chemical and physicochemical information on substrate and all reaction products (H-bonding, hydration, acyl chain mobility).


Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Lipase/metabolismo , Lipólise , Micelas , Pâncreas/enzimologia , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Cobaias , Hidrólise , Lipase/análise , Espectrofotometria Infravermelho
18.
PeerJ ; 5: e3524, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695068

RESUMO

Novel microbial phospholipases A (PLAs) can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS) assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging to Streptomyces (73%) and Micromonospora (10%) genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC) to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA) using enriched PC (≈60%) as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF) using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support). Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of the Streptomyces genus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl-sn-glycero-3-phosphocholine (EEPC) in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and produce novel PLAs with potential applications in biotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...